The signaling pathways by which the Fas/FasL system accelerates oocyte aging

نویسندگان

  • Jiang Zhu
  • Fei-Hu Lin
  • Jie Zhang
  • Juan Lin
  • Hong Li
  • You-Wei Li
  • Xiu-Wen Tan
  • Jing-He Tan
چکیده

In spite of great efforts, the mechanisms for postovulatory oocyte aging are not fully understood. Although our previous work showed that the FasL/Fas signaling facilitated oocyte aging, the intra-oocyte signaling pathways are unknown. Furthermore, the mechanisms by which oxidative stress facilitates oocyte aging and the causal relationship between Ca2+ rises and caspase-3 activation and between the cell cycle and apoptosis during oocyte aging need detailed investigations. Our aim was to address these issues by studying the intra-oocyte signaling pathways for Fas/FasL to accelerate oocyte aging. The results indicated that sFasL released by cumulus cells activated Fas on the oocyte by increasing reactive oxygen species via activating NADPH oxidase. The activated Fas triggered Ca2+ release from the endoplasmic reticulum by activating phospholipase C-γ pathway and cytochrome c pathway. The cytoplasmic Ca2+ rises activated calcium/calmodulin-dependent protein kinase II (CaMKII) and caspase-3. While activated CaMKII increased oocyte susceptibility to activation by inactivating maturation-promoting factor (MPF) through cyclin B degradation, the activated caspase-3 facilitated further Ca2+releasing that activates more caspase-3 leading to oocyte fragmentation. Furthermore, caspase-3 activation and fragmentation were prevented in oocytes with a high MPF activity, suggesting that an oocyte must be in interphase to undergo apoptosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی چندشکلی IVS2nt-124A/G ژن FasL در بیماران مبتلا به سرطان پستان

Introduction: Breast cancer is the most common malignancy worldwide, which affects women. Also, this disease is one of the most frequent malignancies among women in Iran. Apoptosis is a known mechanism against cancer, which has intrinsic and extrinsic pathways. One of these extrinsic pathways, is Fas receptor-ligand system, which plays a key role in apoptotic signaling in many cell types, parti...

متن کامل

Cumulus cells accelerate oocyte aging by releasing soluble Fas Ligand in mice

Although previous studies have suggested that cumulus cells (CCs) accelerate oocyte aging by secreting soluble and heat-sensitive paracrine factors, the factors involved are not well characterized. Because Fas-mediated apoptosis represents a major pathway in induction of apoptosis in various cells, we proposed that CCs facilitate oocyte aging by releasing soluble Fas ligand (sFasL). In this stu...

متن کامل

Dual Role of Fas/FasL-Mediated Signal in Peripheral Immune Tolerance

Fas-mediated apoptosis contributes to physiological and pathological cellular processes, such as differentiation and survival. In particular, the roles of Fas in immune cells are complex and critical for the maintenance of immune tolerance. The precise pathways and unique functions associated with Fas/FasL-mediated signaling in the immune system are known. The dual character of Fas/FasL-mediate...

متن کامل

The extracellular domains of FasL and Fas are sufficient for the formation of supramolecular FasL-Fas clusters of high stability

Using fluorescent variants of Fas and FasL, we show that membrane FasL and Fas form supramolecular clusters that are of flexible shape, but nevertheless stable and persistent. Membrane FasL-induced Fas clusters were formed in caspase-8- or FADD-deficient cells or when a cytoplasmic deletion mutant of Fas was used suggesting that cluster formation is independent of the assembly of the cytoplasmi...

متن کامل

Drug-induced apoptosis in lung cnacer cells is not mediated by the Fas/FasL (CD95/APO1) signaling pathway.

Anticancer drugs exert at least part of their cytotoxic effect by triggering apoptosis. We previously identified chemotherapy-induced apoptosis in lung cancer cells and suggested a role for p53 alternative or complementary pathways in this process. Recently, a role for the Fas/FasL (CD95/Apo1) signaling system in chemotherapy-induced apoptosis was proposed in some cell types. In the present wor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016